geologictimepics

Geology and Geologic Time through Photographs

Archive for the tag “structural geology”

Countertop Geology: Desperate for rocks? Visit a “granite” countertop store!

Where can you see some rocks? It’s winter and everything’s covered in snow –or you’re visiting family in some place where there’s virtually no bedrock exposed anywhere –or you’re simply stranded far from any good rocks in the center of a big city.IP18-0957c

Take yourself on a field trip to a granite countertop store! You might not see very much real granite, but you will see some other types: folded gneiss, pegmatite, amphibolite, quartzite, maybe even some granite… and a lot of amazing metamorphic and igneous features and faults –and they’re all polished and none are covered by vegetation.

I needed a rock fix the other day while visiting my mother in SW Florida –so I drove to a granite countertop store. And wow— I saw all sorts of great stuff, a lot of which related to faulting and fracturing, and a lot of it could go right into a geology textbook. In Florida!

IP18-0947e

Red garnet along with quartz and feldspar in gneiss -a metamorphic rock.

But first of all, the term “granite”. Countertop places call just about everything made of silicate minerals to be granite –and the other day, I didn’t see a bit of granite. Being an intrusive igneous rock, granite is generally pretty homogeneous in appearance, unlike metamorphic or sedimentary rocks, which tend to be banded or layered. (see this primer on rock types)  Granite also has a specific chemistry, which translates to a pretty specific set of minerals: mostly orthoclase and plagioclase feldspars and quartz, with some white or black mica and maybe some amphibole thrown into the mix. As a result, granitic rocks tend to be pretty light-colored so there’s no such thing as a black granite –or a charcoal granite.

IP18-1012ce

Some real granite –with quartz (Q), Orthoclase feldspar (O), Plagioclase feldspar (P), and the black mica Biotite (B).

 

The first rock I saw on my Florida field trip was this gently folded quartzite (notice how the two opposing slabs make it look more folded than it is). It’s chock full of dark zig-zaggy things called stylolites roughly parallel to bedding, many of which are offset along small fault zones. Stylolites form because some rocks partially dissolve when they’re under compressive stress; the actual stylolite consists of insoluble residue left behind after the dissolution occurs.  You mostly see them in limestone because limestone’s pretty soluble. They’re actually pretty unusual in quartzites.IP18-0975

But what I found so instructive with this rock was the faulting. Look! With the 100% exposure, you can see how the apparent offset along the fault just below the penny diminishes as you go to the left. That’s an important feature about faults: their slip tends to die out towards their tips.

Stylolites offset by faults in quartzite

Stylolites and bedding offset by faults in quartzite

In this next photo of a granitic gneiss, you can see an igneous-filled fault offsetting the rock near the top, but it dies out completely as you go downward.
Migmatite gneiss

 

Dismembered pegmatitte in gneiss

Biotite schist with pegmatite

Then there’s the positively swirly biotite schist to the left with white blobs made of the rock pegmatite. It looks to me like the pegmatite once cut through the darker rock as a dike, and then got pulled apart and folded during some later time. Biotite-rich rocks tend to deform very easily whereas pegmatite tends to be pretty stiff, so the pegmatite retained some of its shape as it broke up while the rest of the rock flowed around it.

 

Alteration along fractures in serpentinite

Alteration along fractures in serpentinite

And serpentinite! Serpentinite forms by metamorphism of rocks from Earth’s mantle, so they tend to be comparatively poor in silica and rich in iron and magnesium. This serpentinite is highly altered to a pretty brown color (which makes this a prized countertop rock) –and you can see that alteration’s taken place along fractures –right where you’d expect high temperature fluids to circulate. And if you’re the type of geologist who really gets into fractures… well here you go: 100% exposure!

For me, this last example of a ductile shear zone might be the most helpful. I always have a difficult time describing these features to students because ductile shear zones are conceptually difficult; they’re basically faults without any breakage. As you can see in the photo, material got displaced in a sense roughly parallel to the arrows –but nothing got broken. The metamorphic layers simply bend into the zone and thin out and don’t really break. THAT is a ductile shear zone!

IP18-0982c

Ductile shear zone in gneiss (annotated on right)

Of course, you could also wander into the downtown of a big city and see amazing facing stones too –or you could look at the awesome countertop in somebody’s kitchen –or see incredible polished rocks in bathroom sinks or as floor tiles –and those places are great too. But countertop “granite” places have many many more samples to ogle –the they also have a refuse bin. You might be able to take home some samples—and some of those might even be granite!

IP18-0976c


on an earlier trip to a “granite” store, I found an amazing metaconglomerate –and blogged about the metaconglomerate and geologic time. Please take a look!

Also, most of these pics are available for free download from the search function at my website: geologypics.com.

California’s largest lake formed by its largest fault zone: the Salton Sea and San Andreas Fault

With a surface area of nearly 1000 square kilometers (381 square miles), the Salton Sea is California’s largest lake.  But it’s relatively shallow –and because it has no outlet, it’s saltier than ocean water.  It formed in 1905 when the nearby Colorado River overwhelmed irrigation canals and flooded the region.  Now it’s an incredibly important migratory bird refuge, fishery, and dumping ground for agricultural waste.  Seems like those things shouldn’t really go together!

Aerial view of the Salton Sea, looking northward.

Aerial view of the Salton Sea, looking northward.

But it just seems young.  The Salton Sea actually occupies part of the Colorado River Delta –and as a result, has been filled with freshwater multiple times since the delta was first constructed, probably near the beginning of the Pleistocene.  It’s also at the remarkably low elevation of 234 feet (71m) below sea level; the deepest part of the lake is 44 feet (13 m) below that.

And the low spot is there because of extension caused by the San Andreas fault system!  The San Andreas fault terminates along the eastern margin of the lake basin, but steps across the lake to the Imperial fault, which forms its western margin.  Both faults are right-lateral –and because they step to the right, they pull the area apart in-between them.  Kind of like central Death Valley –which is even lower in elevation than the Salton Sea!  But more on Death Valley later.

Aerial view of Salton Sea, with the approximate locations of the southern San Andreas and Imperial faults.  Note how right-lateral slip on the two en-echelon faults drive extension between them.

Aerial view of Salton Sea, with the approximate locations of the southern San Andreas and Imperial faults. Note how right-lateral slip on the two en-echelon faults drive extension between them.


click here to see more photos of the San Andreas fault system, or click here to see a photo geology tour of Death Valley, California.

Geologic history of the western United States in a cliff face in Death Valley National Park

Of the many geologic events that shaped the western United States since the beginning of the Paleozoic Era, five really stand out.  In approximate chronological order, these events include the accumulation of tens of thousands of feet of sedimentary rock on a passive margin, periods of compressional mountain building that folded and faulted those rocks during much of the Mesozoic–likely driven by the accretion of terranes, intrusion of subduction-related granitic rock (such as the Sierra Nevada) during the Jurassic and Cretaceous, volcanic activity during the late Cenozoic, and mountain-building by crustal extension during the late Cenozoic and continuing today.  This photo on the western edge of Panamint Valley in Death Valley National Park of California, captures all five.

View of canyon wall on west side of Panamint Valley in SE California --part of Death Valley National Park.  See photo below for interpretation.

View of canyon wall on west side of Panamint Valley in SE California –part of Death Valley National Park. See photo below for interpretation.

The photograph below shows an interpretation.  Paleozoic rock is folded because of the Late Paleozoic-early Mesozoic compressional mountain-building; it’s intruded by Jurassic age granitic rock, an early phase of Sierran magmatism that took place just to the west; the granitic rock is overlain by Late Cenozoic basalt flows, and everything is cut by a normal (extensional) fault.  And there is also a dike that cuts the Paleozoic rock –probably a feeder for the basalt flows.

Interpretation of top photo.

Interpretation of top photo.

So this is all nerdy geology cross-cutting relations talk –but here’s the point: in this one place, you can see evidence for 100s of millions of years of Earth History.  Earth is old old old!  THAT’S why I love geology!

And for those of you who crave geologic contacts?  This photo has all three: depositional, between the basalt and underlying rock; intrusive, between the Mesozoic granite and the folded Paleozoic rock; fault, the steeply dipping black line between the basalt and the Paleozoic rock.  Another reason why I love geology!


click here to see photos and explanations of geologic contacts.
or click here for a slideshow of Death Valley geology.

Post Navigation

%d bloggers like this: