Geology and Geologic Time through Photographs

Archive for the tag “Grand Canyon National Park”

Grand Canyon Unconformities –and a Cambrian Island

A prominent ledge punctuates the landscape towards the bottom of the Grand Canyon. It’s the Tapeats Sandstone, deposited during the Cambrian Period about 520 million years ago, when the ocean was beginning to encroach on the North American continent, an event called the Cambrian Transgression. Above the ledge, you can see more than 3000 feet of near-horizontal sedimentary rocks, eroded into cliffs and slopes depending on their ability to withstand weathering and erosion. These rocks, deposited during the rest of the Paleozoic Era, are often used to demonstrate the vastness of geologic time–some 300 million years of it.

View of the Grand Canyon from the South Rim trail. Arrows point to the Cambrian Tapeats Sandstone.

View of the Grand Canyon from the South Rim trail. Arrows point to the Tapeats Sandstone.

But the razor-thin surface between the Tapeats and the underlying Proterozoic-age rock reflects the passage of far more geologic time  –about 600 million years where the Tapeats sits on top of the sedimentary rocks of the Grand Canyon Supergroup. Those rocks are easy to spot on the photo above because they contain the bright red rock called the Hakatai Shale. Even more time passed across the surface where the Tapeats sits on top of the 1.7 billion year old metamorphic basement rock. You can put your thumb on the basement and a finger on the Tapeats –and your hand will span 1.2 billion years! Read more…

Great Unconformity –Grand Canyon, Arizona

So just like intrusive igneous rocks, metamorphic rocks require great lengths of time to accomplish the uplift and erosion in order to be exposed at Earth’s surface.

So what do we make of this photograph?  It shows a sequence of sandstone, shale, and limestone sitting on top metamorphic rock (called the “Vishnu Schist”) in the Grand Canyon.  The sandstone was deposited right on top the schist.

Great unconformity, Grand Canyon, Arizona

Sequence of Cambrian sandstone (the ledge across the middle of the photo), shale (the overlying slopes) and limestone (the upper cliffs) deposited on top the Vishnu Schist in the Grand Canyon.


Since sedimentary rocks, like sandstone, shale, or limestone, are deposited at Earth’s surface –and metamorphic rock forms beneath the surface, this photo shows that BEFORE the sedimentary rocks were deposited, the metamorphic rock (schist) had to have been uplifted and exposed.  So all the time required to bring the schist to the surface had to take place before the sandstone was even deposited.

The surface of contact between the sandstone and the schist is called an unconformity because it is here that we see evidence for a great deal of missing rock record.  The sandstone must be much younger than the schist –for the very reason that the schist first had to get uplifted and exposed at the surface before the sandstone was deposited on top of it.  So… because the sandstone is so much younger, but it was deposited right on top the schist, there must be a gap in the rock record between them … an unconformity.

And here is where we see evidence for even LONGER periods of time.  Overlying the sandstone?  Thousands and thousands of feet of more sedimentary rock.  And much of that sedimentary rock was marine… formed at sea level.  It is now over a mile above sea level.

And the schist itself?  The people who’ve studied it have determined that much of it was originally volcanic –which means that it originally formed at the Earth’s surface.  So… over geologic time, it must have been buried to the depths needed to turn it into a metamorphic rock BEFORE it was uplifted and exposed.

So… how old is Earth?  Some say 6 or 10,000 years… I think we’re looking at 10s of millions in this photo.  And if we consider the numerical ages for these rocks, 1.7 billion is the age of metamorphism of the schist –its original volcanic rock must have been older!

Post Navigation

%d bloggers like this: