geologictimepics

Geology and Geologic Time through Photographs

Archive for the tag “young earth creationism”

Scientists, Science, Icicles, and Faith

In January, I started teaching the Introductory Geology course “Environmental Geology and Landform Development” –with two lecture sections of about 200 students each. And this course, populated largely by folks who are fulfilling a science requirement and  otherwise try to avoid science like it was the plague, needed some general statement about science. After all, it’s science that may someday save them from the plague!

So science… what is it? Seems like scientists themselves have a zillion different definitions, so I started with “Scientist. –What’s a scientist?” If you google “scientist” and then look at the images, you see this. As this image is a screenshot of photos that aren’t mine, I intentionally blurred it, but you should get the idea of what’s there.

lec1-allrb

Really??? these are the most popular images of scientists and in every picture–save the tiny one in the lower right– is some person in a WHITE LAB COAT and a microscope or a beaker. Ironically, it shows about 50% of the scientists as women. Go figure there too.

Looks like we’ve been fed a misrepresentation of what scientists are. We actually do a wide variety of things. In geology, we do a wide wide range of things. We spend time in the field (see picture below), we write, we draw maps and cross-sections, we look down microscopes (maybe in jeans and t-shirts), we write computer models, we do experiments, and we sometimes wear white lab coats.

130324-17c

Geologist inspecting a fault zone between the dark-colored Beck Spring Dolomite and the overlying light-brown Noonday Dolomite. Death Valley, California.

All the time, we’re trying to understand something about our world. Our universe. We’re collecting information (data). We’re testing ideas. We’re adding detail to somebody else’s ideas. We’re building a framework of knowledge that’s grounded in our observations and testable ideas. Replace the word “ideas” with “hypotheses” in this paragraph –and you get science.

Ideally, most scientists approach their work using the “scientific method” –which is a highfalutin way of saying they see something they don’t understand (an observation), which causes them to ask a question (like how did this happen?); they come up with ideas (hypotheses) that may explain it, and then they test those hypotheses.

ice-stufflr

Icicles?

Which is what we did in class with icicles! The month before–in mid-December–Eugene had this incredible ice storm, which covered everything in ice to make it look like a scene from the movie Frozen. It was beautiful and destructive. And we can all pretty much guess how icicles form: water starts to drip off the branch but freezes before it falls off. Icicles grow straight downward off the branch because water, like everything else, falls vertically with gravity.

As it turned out, some of the icicles seemed to grow straight out from the branches. Look at the photo below! How could this be? We know icicles should grow straight downwards! So as a group, we came up with some hypotheses, shown below next to the picture. I was the proud sponsor of hypothesis #4 and #5.

lec1-c

Alternate hypotheses to explain near horizontal growth of icicles

As a group (all 200 of us), we could rule out hypothesis #3, that the picture was rotated. I shot the image and promised I didn’t rotate it! We could also rule out hypothesis #4, that the ice somehow grew horizontally towards the branch, because that idea conflicted with all previous observations we’d made on icicles, that they grow away from the branch as ice progressively freezes.

That left hypotheses #1, #2, #5. We figured ways we could test #1, #2. If it were the wind, for example, we’d expect all the icicles to go in one direction in a given place, regardless of the limb angle. If it were #2, we might expect to see some icicles show a curve to indicate progressive tilting of the branch–which you can actually see in the photo above!

Hypothesis #5, that “Some magical force caused it to grow sideways”isn’t testable. It’s NOT TESTABLE. We can’t come up with ways to support it or rule it out. You can believe it if you want to, but it’s not science.

That’s the point. To be scientific, a hypothesis must be testable. Most of us hold various non-scientific beliefs in our hearts that we know to be true –for us. I think that’s a good thing. For many of us, those beliefs lend us qualities like strength or courage or compassion when we need them the most. They’re still not scientific.

And that’s what really gripes me about the “scientific creationists” –as well as today’s Republican Party. The “scientific creationists” say they use science to demonstrate the existence of God, or that Earth is young –when believing either requires a suspension of science and an act of Faith. By claiming they’re being scientific, the “scientific creationists” hamstring their own belief system. They take the wonder out of religion and render it baseless and sterile.

And the Republicans? They’re now all about “alternative facts”. Maybe it’s unfair to group “all Republicans” together –but I see very few standing up to this reckless leader we have. Maybe they just lack integrity.

161215-7lrcrot

this photo was rotated

Conglomerate!

A trip to Death Valley over Thanksgiving two weeks ago reignited all sorts of things in my brain, one of which being my love of conglomerate. Honestly, conglomerate HAS to be the coolest rock!

151128-3

Tilted conglomerate in Furnace Creek Wash, Death Valley.

Just look at this stuff! Just like any good clastic sedimentary rock, it consists of particles of older rock–but with conglomerate, you can easily see those particles. Each of those particles opens a different door to experiencing deep geologic time.

As an example, look at the conglomerate below, from the Kootenai Formation of SW Montana. It contains many different cobbles of light gray and dark gray quartzite and pebbles of black chert. The quartzite came the Quadrant Formation and chert from the Phosphoria Formation. So just at first glance, you can see that this conglomerate in the Kootenai contains actual pieces of two other older rock units.

3528-38lr

Conglomerate of the Kootenai Formation, SW Montana.

But consider this: The Quadrant formed as coastal sand dunes during the Pennsylvanian Period, between about 320-300 million years ago and the Phosphoria chert accumulated in a deep marine environment during the Permian, from about 300-250 million years ago. The Kootenai formed as river deposits during the early part of the Cretaceous Period, about 120 million years ago. All those are now together as one.

Similar to the modern river below (except for the glaciers), the Kootenai rivers transported gravel away from highlands –the highlands being made of much older rock that was uplifted and exposed to erosion. That older rock speaks to long gone periods of Earth history while the gravel speaks to the day it’s deposited.

120709-123

Athabasca River in Jasper National Park, Alberta

But this is where my head starts to spin: the modern gravel is made of rounded fragments of old rock –so when you look at a conglomerate, you glimpse at least two time periods at once: you see the conglomerate, which reflects a river or alluvial fan –or any environment near a bedrock source– and you also see the particles, which formed in even older environments.

And it gets worse –or better. What happens when you see a conglomerate eroding? The conglomerate is breaking up into modern sediment, which consists of pieces of older sediment –that at one time was modern sediment that used to be older sediment?  Look at the pebbles below. I keep them in a rusty metal camping cup on a table in my office.

151209-4

“Recycled” pebbles of the Kootenai Formation.

These stream pebbles eroded out of the Kootenai conglomerate. So… they’re simultaneously modern stream pebbles and ancient ones –AND… they originated as the Quadrant and Phosphoria Formations. Four periods of time, spanning 300 million years, all come together at once.

And if that’s not enough, those conglomerates in Death Valley? They  contain particles of… conglomerate! Look! The arrow in the left photo points to the boulder of conglomerate on the right. If you click on the photos, you can see them enlarged.

All those particles, which are now eroding and becoming modern sediment, were yesterday’s sediment. And the conglomerate boulder? It too is becoming “modern sediment” and it too was “yesterday’s sediment” when it was deposited on an alluvial fan with the rest of the material. However, it goes a step further: its pebbles and cobbles were both “modern” and “yesterday’s” sediment at a still older time. And before that? Those pebbles and cobbles eroded from even older rock units, some of which date from the Cambrian, about 500 million years ago.

For fun, here’s a photo of another conglomerate boulder.

Conglomerate clast in conglomerate

Conglomerate boulder in conglomerate of the Furnace Creek Formation, Death Valley, CA.

 

I can’t help but wonder how Young Earth Creationists would deal with these rocks. Given their story of the Grand Canyon, in which the Paleozoic section was deposited during early stages of “The Flood” and the canyon was carved during the later stages (they really do say that too!), they’d probably roll out that same blanket answer: The Flood. End of discussion. No questioning, no wondering.

In my opinion, one of the beautiful things about geology is that we’re always questioning and wondering.

 

 

for more geology photos, please visit my website.

 

 

 

 

Rockin’ countertops–geologic time in our kitchens and bathrooms!

I stopped by a “granite” supplier yesterday –the kind of place that sells “granite” and “marble” slabs for countertops.  Besides the fact that almost none of the slabs were actually granite or marble, they were spectacular rocks that showed wonderful wonderful detail. I nearly gushed at the idea of taking a geology field trip there.  It’s local, and you seldom find exposures like this anywhere else!

slabs of polished rock at a "granite" warehouse --not sure if any of this is actually granite, but it all reflects geologic time.

slabs of polished rock at a “granite” warehouse –most of it’s not actually granite, but it all reflects geologic time.

Generally speaking, “granite” in countertop language means “igneous” or “metamorphic” –crystalline rocks that form miles beneath Earth’s surface and so require great lengths of time to reach the surface where they can be quarried.  When I first started this blog, geologic time with respect to igneous and metamorphic rocks were some of the first things I wrote about –it’s such pervasive and important stuff.

So the main point is that your friend’s kitchen with “granite” countertops surrounds you with geologic time every time you walk in there!

But check out that green polka-dotted rock on the right side of the photo.  Full of rounded cobbles –it’s a conglomerate, originating by sedimentary processes on Earth’s surface. Does it indicate great lengths of geologic time? A Young Earth Creationist might say it were a deposit of “the Flood” and end-of-story.

Here’s a closer look:

Polished conglomerate --individual cobbles are metamorphic rocks. The green color comes from the mineral chlorite.

Polished conglomerate –individual cobbles are metamorphic rocks. The green color of the background material comes from the mineral chlorite. That’s a penny (on the left) for scale.

The conglomerate is made of beautifully rounded cobbles and small boulders that are almost entirely metamorphic in origin.  Most of them are gneisses, which form at especially high grades of metamorphism, typical of depths greater than 8 or 10 miles!  After a (long) period of uplift and erosion, the rock was exposed to erosion, gradually breaking into fragments, which eventually became these rounded cobbles, and ended up in the bottom of a big stream channel or on a gravel bar somewhere.

But that’s not the end of the story, because this deposit of rounded cobbles itself became metamorphosed –so it had to get buried again. We know that because the rock is pervaded by the mineral chlorite, which gives the rock its green color.  Chlorite requires metamorphism to form.  Granted, the rock isn’t highly metamorphosed –there’s no metamorphic layering and chlorite forms at low metamorphic temperatures– but it’s metamorphic nonetheless, typical of depths of a few miles beneath the surface.

And if you look even closer, you can see some of the effects of the reburial pressures: the edges of some of the cobbles poke into some of the other ones. This impingement is a result of the stress concentrations that naturally occur along points of contact.  The high stress causes the less soluble rocks to slowly dissolve into the other, more soluble rock.

cobbles, impinging into each other. Stars on right photo show locations.

cobbles, impinging into each other. Stars on right photo show locations.

I’m already jealous of the person who’s going to buy this slab of rock. It tells a story that begins with 1) metamorphic rock forming deep in the crust, then 2) a long period of uplift and erosion to expose the rocks, then 3) erosion, rounding, and deposition of the metamorphic cobbles, 4) reburial to the somewhat shallow depths of a mile or two–maybe more, 5) more uplift and erosion to expose the meta-sedimentary deposit, 6) Erosion by human beings.

And me? Personally, I’d like to make a shower stall or a bathtub out of this rock –can you imagine???


Some links you might like:
a blog I like that’s about science and creationism
another blog about an ancient Earth and deep time
my original song “Don’t take it for Granite“. (adds some levity?)
Geology photos for free download.

 

 

 

“Crazy Modern Period” -a vanishingly thin sliver of Earth History

I’m in Florida, visiting my mother. There’s a beach, waves, shorebirds… And it’s warm! Late last week, my youngest daughter and I boarded a plane in Portland, Oregon, flew to Chicago –and then on to Fort Myers, Florida –across the continent for a distance of nearly 3000 miles. Being the holidays, the airports were packed, with people going in all directions, all over the planet. And like most people, we arrived at our destination the same day we departed.

Above the clouds --somewhere over eastern Oregon.

Above the clouds –somewhere over eastern Oregon.

Of course, just about everybody agrees that us human-types do pretty amazing things, like fly across the continent in a day and communicate instantly with family, friends, and colleagues on the other side of the planet. Oh for goodness sake… human beings have traveled to the moon and sent spacecraft to Mars!

In the context of geologic time, however, humanity and its accomplishments are positively mind-boggling. Homo sapiens dates back some 100,000 years, a miniscule period of time given that Earth is 4.55 billion years old. But it wasn’t until 1933, less than 100 years ago, that humans entered the “crazy-modern period” –when we flew the first airline flight across the US with no overnight stops. At that point, all parts of our planet became readily accessible to the public.

Divide 100 years by 4.55 billion? Our “crazy-modern period” is one 45.5 millionth of Earth history. What a unique moment in Earth history we’ve created! No other species has come close to anything like this –ever— in 4.55 billion years.

Sanibel Island and the Florida Gulf Coast --while descending into Fort Myers

Sanibel Island and the Florida Gulf Coast –while descending into Fort Myers

I won’t try to speculate how long our resources and (relatively) clean environment will last, but if we don’t figure out a way to live sustainably, these amazing times will soon disappear no matter how smart we are. Our sliver of Earth history will remain vanishingly small. Earth will heal, of course –but humans don’t have the same luxury of geologic time.

Regardless of whether or not we survive our successes, all of us share this unprecedented time. Here’s to another solstice passing –and to another calendar year. _MG_3784

Geologic Irony in Cincinnati and northern Kentucky! Deep geologic time everywhere –and the absurd denial of the Creation Museum.

It’s been awhile since I’ve posted –too many things have been happening, like the end of fall term, other deadlines, and of course, coming down with a bad cold!  But I did manage to visit Cincinnati, Ohio for Thanksgiving.  I’m originally from Cincinnati, and I always enjoy going back.

Ordovician shale and limestone along I-75 in northern Kentucky; downtown Cincinnati, Ohio occupies the background

Ordovician shale and limestone along I-75 in northern Kentucky; downtown Cincinnati, Ohio occupies the background

Besides visiting with old friends, one thing I love about the Cincinnati-Northern Kentucky area, is the incredible wealth of marine fossils in its rocks, which date from the Ordovician Period, some 475 million years ago.  It’s always amazing to me that I can, almost at random, pick up a rock and see the remains of critters that were actually alive so long ago.  It fills me with a sense of wonder, mystery, and awe that I’ll never be able to explain –and it demonstrates to me how I’m a part of the earth –not apart from it.

marine fossils in Ordovician limestone from northern Kentucky --you can see mostly brachipods (they look sort of like clam shells) and bryozoa (branching coral-like things) in this rock.

marine fossils in Ordovician limestone from northern Kentucky –you can see mostly brachipods (they look sort of like clam shells) and bryozoa (branching coral-like things) in this rock.

Really, these fossil-rich limestones are just about EVERYWHERE!  Even many of the stone buildings and walls that you can see throughout Cincinnati, are full of Ordovician marine fossils.

And what a wonderful setting!  The Ohio river cuts through its original floodplain, now perched a couple hundred feet above the river.  That’s actually a whole story in itself, because today’s Ohio River formed as a result of the continental ice sheet advancing across northern Ohio, and blocking the courses of several north-flowing rivers, such as the Kentucky and Licking Rivers.

Looking up the Ohio River from the air --near where Ohio, Kentucky, and Indiana meet.

Looking up the Ohio River from the air –near where Ohio, Kentucky, and Indiana meet.

And then there’s the Creation Museum in northern Kentucky, perched on the old river terrace above bedrock of fossil-rich Ordovician limestone and shale.  One look at the two photos below and you can see what they’re all about.

The explanation for fossils according to the Creation Museum (on the left), and a diorama depicting a human being coexisting with a dinosaur on the right.

The explanation for fossils according to the Creation Museum (on the left), and a diorama (on the right) depicting a human being coexisting with a dinosaur.

According to “The Museum”, fossils “were formed by Noah’s Flood (~4,350 years ago) and its aftermath” –and dinosaurs really did coexist with humans.  In fact, I read that before Adam and Eve ate their apple, T Rex dinosaurs were actually vegetarian.

But don’t take it from me that those limestones are actually very old (100s of millions of years, as opposed to 4,350 years).  Take a look at a geologic map.  The Cincinnati-Northern Kentucky area is underlain by more than 1000 feet of limestone and shale –and if you travel eastward or westward, you encounter 1000’s more feet of marine sedimentary rock that sit on top the Ordovician.  And the fossils in those rocks show a change with time, called evolution.  If you think about it, you’re looking at a long long time to deposit –and preserve–all that sediment.

Geologic map of the United States; the area around Cincinnati is enlarged.  "CM" shows the approximate location of the Creation Museum.

Geologic map of the United States; the area around Cincinnati is enlarged. “CM” shows the approximate location of the Creation Museum.

The Creation Museum tells us that all that sediment was deposited by “the flood”.  Never mind that very little of the rock contains particles even as big as a sand grain.  Below is a photo of a real flood deposit.  As you can see, the deposit is very coarse-grained!  It’s coarse-grained because large floods are very energetic and transport large particles.

Coarse-grained sediment, deposited by one of the Missoula Floods in Oregon, some 15,000 years ago.

Coarse-grained sediment, deposited by one of the Missoula Floods in Oregon, some 15,000 years ago. The exposure is about 20 feet high.

So the Creation Museum is asking you to BELIEVE that 1000s of feet of limestone were deposited by a flood, as well as the 1000s of feet of older rocks and 1000s of feet of younger rocks I didn’t even mention.  They also want you to believe that T. Rex was a vegetarian who lived alongside Adam and Eve.

But here’s what really bothers me: by misrepresenting science and promoting its own skewed interpretation of the bible as the literal Truth, the “museum” discourages people from looking at these beautiful rocks with a sense of wonder, mystery, and awe.  It discourages them from inquiring into how those rocks really formed.  The museum discourages people from learning important things about our planet and from forming their own views on the world.

Me petting a dinosaur at the Creation Museum

Me petting a dinosaur at the Creation Museum.


Type “Ordovician” into the search for a few more photos of Ordovician fossils.

Lakes drying up in southeastern Oregon –geologically, very quickly

Lake Abert’s one of the coolest lakes in Oregon –in my opinion.  It’s got birds along its shoreline because it hosts a huge population of brine shrimp (which smell, by the way).  It has the brine shrimp because it doesn’t have any fish –and it doesn’t have fish because it’s an alkali lake in a closed basin, full of salt. The water that goes into this lake stays there, until it evaporates.  When it evaporates, it leaves behind more salt.

Birds along small creek that empties into Lake Abert, Oregon.

Birds along small creek that empties into Lake Abert, Oregon.

Over the past few years, the lake seems to be drying up faster than usual–which makes all the sense in the world because we’ve had less rainfall than usual over the past few years.  There’s still water, but it’s noticeably farther out into the “lake” than before.  That’s certainly fast.  We, as humans, can watch this lake dry up over just a few years.

salt deposits at Lake Abert, Oregon

salt deposits at Lake Abert, Oregon, looking northward.  Abert Rim, along the right side of the photo, is uplifted along a normal fault.

But think of what the lake was 20,000 years ago, at the height of the last glaciation!  The physiographic map below shows Lake Abert (along US 395) as part of the much larger Lake Chewaucan, which included the even larger Summer Lake basin to the west.  There’s all sorts of evidence for this earlier lake: old shorelines, deposits at elevations well above the modern lake, gravel bars.  And Lake Chewaucan was only one of many such Pleistocene, or “pluvial” lakes that occupied closed basins in the Oregon and Nevada Basin and Range.

Distribution of Pleistocene lakes in the southern Oregon Basin and Range.

Distribution of Pleistocene lakes in the southern Oregon Basin and Range.

Of course these ages do a “time-number” on me.  20,000 years is a short time, geologically.  So just yesterday, this region had many of these large large lakes –and in just a short time, they’ve dwindled to isolated remnants.  But in just the last 5 years, those remnants have dwindled even more.  It’s dramatic.  It’s frightening.

Odd too –those Young Earth Creation types think that planet Earth is younger than Lake Chewaucan!  And really?  Lake Chewaucan couldn’t have formed unless there was a basin there –and do you see the cliffs on the right (east) side of the lake?  That’s Abert Rim, uplifted by a big normal fault –which is what formed the basin.  So, the 2000′ of  uplift on this fault must be older than the lake, which is older than planet Earth!  Cool!


For more photos of Lake Abert, type “Lake Abert” into the geology search engine.
For information about the completely new (available in November, 2014) Roadside Geology of Oregon book.

Geologic Time in a mountainside –the Wallowa Mountains from Joseph, Oregon

Joseph, Oregon is a wonderful place for geology.  The town sits right at the foot of the Wallowa Mountains in the northeastern corner of Oregon.  The mountains rise some 4-5000′ abruptly from the valley floor along a recently active normal fault.

The Wallowa Mountains rise along a fault zone just south of the town of Joseph.

The Wallowa Mountains rise along a fault zone just south of the town of Joseph.

In the mountains, you can see some bedrock relations that speak to great lengths of geologic time.  An erosional remnant of the Columbia River Basalt Group caps Sawtooth Peak in the photos below; it sits directly on granite of the Wallowa Batholith –and just a little bit south, on the next peak, the granite intrudes Martin Bridge Limestone!  So, from oldest to youngest, the rock units are the Martin Bridge Limestone, the Wallowa granite, the Columbia River Basalt.

Sawtooth Peak (right) capped by Columbia River Basalt.  Beneath it is granite of the Wallow Batholith --and off to the left, are the bedded rocks of the Martin Bridge Limestone.

Sawtooth Peak (right) capped by Columbia River Basalt. Beneath it is granite of the Wallowa Batholith –and off to the left, are the bedded rocks of the Martin Bridge Limestone.  See below for labels.

Rock units and contacts described in the text

Rock units and contacts described in the text

Never mind that we know the Martin Bridge Limestone is Triassic –so more than 200 million years old –and that the Wallowa Batholith formed at different times between 140 to about 120 million years ago –and that the basalt is about 16 million years old.  You can throw out radiometric dating, but even so, you’re looking at a great span of geologic time.  The limestone first had to be deposited, layer after layer –and then buried –and then intruded at a depth of 5-8 km by the granite –which THEN had to get uplifted to Earth’s surface so the basalt could flow over it.  After THAT, it all had to get uplifted to its present elevation along the normal fault just south of town and much of the basalt had to erode away.

Honestly, we have influential people in this country who spout off things like the Earth is only 6000 years old.  They also deny the overwhelming evidence for climate change.  I guess I should stop writing now before I get too worked up!


More photos of the Wallowas at Geologic Photography.

San Andreas Fault

Here’s a view of the San Andreas fault and Pt. Reyes in northern California, looking northward.  The fault runs right up the narrow Tomales Bay–and in just a few miles, runs along the edge of San Francisco.

The San Andreas fault is amazingly well-studied –it’s probably the most-studied fault zone in the world.  After all, it is capable of generating huge earthquakes in heavily populated areas, so the more we know about it the better.

San Andreas fault and Tomales Bay

Aerial view of San Andreas fault and Pt. Reyes --just north of San Francisco. View is to the north. The fault runs down Tomales Bay, the narrow arm of the ocean that runs diagonally across the photo.

One thing we know about the San Andreas is that it generally moves in a side-by-side way (strike-slip) so that rock on the east side moves south relative to that on the west side.  And over time, the fault has moved the eastern rock more than 300km relative to the western rock.

Now, 300 km –that speaks to millions of years of geologic time.  We can measure the rate at which the Pacific Plate moves relative to the North American Plate –about 4.5 cm/year.  The San Andreas takes up most of that –but not all.  But if we assume it takes it all, we’re looking at a total of 300km at 4.5cm/year –so at least 6.6 million years.

Of course… if you think planet Earth is only 10,000 years old, that means the fault’s moved some 300 meters (3 football fields) every 10 years.  And considering that the displacement was about 6 meters during the M 8.3 1906 San Francisco Earthquake…that’s a lot of earthquakes in just a short period of time!

Or another way of putting it, if planet Earth were 10,000 years old AND the San Andreas fault formed at the very beginning, 10,000 years ago… then there must have been 50 of those San-Francisco-sized Earthquakes every ten years –or… 5 of those every year.  Yikes!

But of course… we know that the San Andreas isn’t as old as the planet.  It cuts that granite at Pt. Reyes… which is related to the Sierra Nevada granite –which is really pretty young –but older than 10,000 years by about 100 million.

click here if you want to see more photos of the San Andreas fault –with a map!

Great Unconformity in Montana –and rising seas during the Cambrian

Here’s yet another picture of the Great Unconformity –this time in southwestern Montana.  Once again, Cambrian sandstone overlies Precambrian gneiss.  You can see a thin intrusive body, called a dike, cutting through the gneiss on the right side.  You can also see that the bottom of the sandstone is actually a conglomerate –made of quartzite cobbles derived from some nearby outcrops during the Cambrian.

Great unconformity in SW Montana.

Photo of Cambrian Flathead Sandstone overlying Proterozoic gneiss in SW Montana.

 

And that’s me in the photo.  My left hand is on the sandstone –some 520 million years or so old; my right hand is on the gneiss, some 1.7 BILLION years old.  There’s more than a billion years of missing rock record between my two hands.  Considering that the entire Paleozoic section from the top of the Inner Gorge in the Grand Canyon to the top of the rim represents about 300 million years and is some 3500′ thick… yikes!

And… just like in the Grand Canyon and elsewhere, there is Cambrian age shale and limestone above the sandstone.  This rock sequence reflects rising sea levels during the Cambrian.  It’s called the “Cambrian Transgression”, when the sea moved up onto the continent, eventually inundating almost everywhere.  If you look at the diagram below, you can see how this sequence formed.

Marine transgression

Sequence of rock types expected during a transgression of the sea onto a continent.

If you look at time 1, you can see a coastline in cross-section, with sand being deposited closest to shore, mud a little farther out, and eventually carbonate material even farther out.  As sea levels rise (time 2), the sites of deposition for these materials migrates landward, putting mud deposition on top the earlier sand deposition and so on.  At time 3, the sequence moves even farther landward, resulting in carbonate over mud over sand.  If these materials become preserved and turned into rock, they form the sequence sandstone overlain by shale overlain by limestone –just what we see on top the Great Unconformity.

 

 

 

Great Unconformity –in the Teton Range, Wyoming

As it turns out, the “Great Unconformity”, the contact between Cambrian sedimentary rock and the underlying Precambrian basement rock, is a regional feature –it’s not only in the Grand Canyon, but found all over the Rocky Mountain West –and for that matter, it’s even in the midwest.  As an example, here are a couple photos from the Teton Range in Wyoming.

The yellow arrow points to the contact between the Cambrian Sandstone and underlying Precambrian metamorphic rock... the Great unconformity.

This top photo shows the Grand Teton (right) and Mt. Owen (left) in the background… in the foreground, you can see a flat bench, which is underlain by flat-lying Cambrian sandstone.  Below that are darker-colored cliffs of Precambrian metamorphic rock.  The unconformity is right at their contact (arrow).

Also notice that the Grand Teton and Mt. Owen are made of metamorphic (and igneous) rock –but they’re much much higher in elevation than the sandstone.  That’s because there’s a fault, called the “Buck Mountain fault” that lies in-between the two.  The Buck Mountain fault moved the rock of the high peaks over the ones in the foreground during a mountain-building event at the end of the Mesozoic Era.  Because the metamorphic and igneous rock is so much more resistant to erosion than the sandstone, it stands up a lot higher.

Precambrian metamorphic and igneous rock of the Teton Range and overlying sedimentary rock.

This lower photo shows the view of the Teton range from the top of the sandstone bench (appropriately called “Table Mountain”).  As you look eastward towards the range, you can pick out the Buck Mountain fault (between the metamorphic and igneous rock of the high peaks) and the Cambrian sedimentary rock (the layered rocks).  Significantly, the Cambrian rocks, just like in the Grand Canyon, consist of sandstone, overlain by shale, overlain by limestone.

And geologic time… remember… for the sandstone to be deposited on the metamorphic or igneous rock, the metamorphic and igneous rock had to get uplifted from miles beneath the surface and exposed at sea level.  And since then, it’s been uplifted to the elevation of The Grand Teton (13370′) and Mt. Owen (12, 928′) !

Click here to see more photos of unconformities.
or… click here to see a geologic map of Grand Teton National Park, Wyoming.

Post Navigation

%d bloggers like this: