Geology and Geologic Time through Photographs

Archive for the tag “travel”

Sampling New Zealand’s (Amazing) Geology

New Zealand’s landscape can make just about anybody appreciate geology. Its glaciated peaks, its coastline –that ranges from ragged cliffs to sandy beaches to glacial fjords– its active volcanoes… they all work together to shout “Earth Science!” With that in mind, here’s some basics of New Zealand’s amazing geology, followed by some geological highlights of my trip of January and early February, 2018.

NZ map--all

Map of New Zealand, showing accreted terranes in colors and cover assemblage in gray.

North and South Island Bedrock  The different colors on this map show New Zealand’s basement rock, named so because it forms the lowest known bedrock foundation of any given area. The basement tells stories of New Zealand’s deep past, from about 500-100 million years ago. Individual colors signify different terranes, accreted (added) one-by-one through plate motions to the edge of what was then the supercontinent Gondwana. They mostly consist of sedimentary and metamorphosed sedimentary rock, although the narrow belt of purple-colored Dun Mountain Ophiolite formed as oceanic lithosphere, and the red-colored areas consist of granitic igneous rock, some of which has been metamorphosed to gneiss.

Gray indicates the younger cover rock, formed after accretion of the terranes. Consisting of a wide range of sedimentary and volcanic rocks, as well as recently deposited sediment, it’s just as interesting and variable as the terranes. Because it includes volcanoes, it’s largely the cover that gives the North Island its distinctive flair. By contrast, the South Island consists largely of uplifted basement rock, much of which has been –and still is—glaciated. All those long deep lakes, such as Lakes Wanaka and Tekapo, were carved by glaciers and are now floored with their deposits of till.

Andesite stratovolcano, New Zealand

Mt. Ngauruhoe, a 7000 year-old andesite stratocone near Ruapehu on the North Island

Those differences exist largely because the North and South Islands occupy different plate tectonic settings. The North Island sits over a subduction zone, so it hosts an active volcanic arc, expressed as the Taupo Volcanic Zone. The North Island also hosts older volcanic arcs –and even an active volcanic field that roughly coincides with the city of Auckland! By contrast, the South Island is transected by the Alpine fault, which connects the subduction zone in the north with the one in the south as a transform fault. Much like the San Andreas fault in California, it and some related faults are responsible for a great deal of uplift—and formation of mountain ranges such as the Southern Alps and Kaikoura ranges –as well as uplift and subsidence along different parts of New Zealand’s coastline. You can see how far the Alpine fault has slipped by matching up the belts of accreted terranes on either side, particularly the Dun Mountain Ophiolite –some 460 km!

My trip: January 5-February 7

A quick note… you should be able to click on any of these images to see them as larger versions in another window!
… The greatest thing about my trip was that I was able to see (and photograph!) most of these elements of New Zealand’s geology. Please take a look at the many other images of New Zealand geology that I posted on my website! I started in Auckland, where I met up with a group of faculty and students from Centre College, a liberal arts school based in Danville, Kentucky. They were studying North Island volcanoes and graciously let me tag along. We spent most of our time near Auckland and in the Taupo Volcanic Zone. From there I went to Wellington and then on to the South Island, where I rented a car and traveled for another two weeks, mostly with my friend Megan.

Auckland area

Here’s a geologic map of the Auckland area, published by the New Zealand GNS (Geological and Nuclear Sciences). The reds and pinks are basalts of the Auckland Volcanic field; the browns are Miocene sedimentary rocks that contain an abundance of volcanic particles, and the blue marks the Waipapa Composite Terrane, which forms the local basement.

The Auckland Volcanic Field consists of more than 50 volcanoes, many of which are small cinder cones that show evidence of explosions related to water-magma interactions. The first eruption occurred 250,000 years ago and the most recent, at Rangitoto, only 600 years ago. Rangitoto is the large red circular island in the northeast corner of the map. It’s a small shield volcano, capped by a cinder cone, which makes for a lovely boat ride and hike! Rangitoto is the only volcano in the field that shows evidence for repeated eruptions. Because of the recency of the volcanism –and the fact that it encompasses Auckland, the GNS is actively monitoring the field and making preparations in the event of an eruption.


Our group hiking up Rangitoto

Taupo Volcanic Zone

The Taupo Volcanic Zone (TVZ), which first started erupting about 2 million years ago, occupies a rift zone, marked by numerous, recently active normal faults. The rift is superimposed on the modern volcanic arc produced by subduction of the Pacific beneath the Australian plate. The TVZ is dominated by andesitic volcanism towards the northeast and southwest ends of the zone and rhyolitic volcanism in between, all of which is active or recently active. We visited localities throughout the zone.

Active volcanic crater, New Zealand (Pan)

Active crater in White Island. Crater Walls are mostly pyroclastic deposits.

White Island, in the photo above, is an active stratovolcano that rises right out of the Bay of Plenty. The volcano marks the northern end of the zone. Its breached crater hosts a gigantic rock avalanche deposit, crater lake, sites of active sulfur mineralization, crater walls of pyroclastic deposits, and steam, steam, steam!

Andesitic dike, New Zealand

Meads Wall, an andesite dike intruding lavas on Mt. Ruapehu, New Zealand (180114-18)

Ruapehu, another active stratovolcano, marks the southern end of the zone. We spent the last 8 days of the course in and around that area, including hiking the well-known Tongariro Crossing and climbing to Ruapehu’s crater lake at its summit. I, of course, sprained my ankle just before the Tongariro hike and missed the summit hike because I was on a bus to Wellington. Those are altogether different stories! One place I especially like is Meads Wall, shown in the adjacent photo. It’s a large andesite dike that cuts through older andesite lava flows.

The rhyolitic volcanism that dominates the central part of the TVZ gives a more subtle expression to the landscape than the prominent andesitic stratovolcanoes –which is largely because the rhyolitic eruptions were so gigantic as to form calderas and blanket the entire area with ash flow tuff and air fall. The ash flow tuff shown below was deposited by the Taupo eruption only 1800 years ago. It erupted more than 100 km3 of material. An earlier eruption from the same volcano, called the Oruanui eruption, put out an estimated 1000km3 of material and formed the caldera that holds Lake Taupo. Altogether, eruptions in the TVZ have erupted more than 10,000 km3 of magma since they started about 1.6 million years ago. Cole and Spinks (2009) list seven calderas within the zone.


Ash flow tuff. Bluffs near Turangi; close-up showing pumice fragments; Joe Workman, our leader, leaning against a wall of tuff near Taupo.

The thermal springs in and around the town of Rotorua provide a great expression of the current activity. One of my favorite spots was the Waiotapu thermal area, some 30 km southeast of Rotorua. Among other things, it hosts numerous explosion craters filled with hot springs. Below is a photo of the colorful “Champagne Pool”, which gets its name from the CO2 bubbles that rise to the surface. The colors result from a variety of things, including yellows and oranges from the sulfide minerals orpiment (arsenic) and stibnite (antimony), and white from sinter (silica) deposition.

Hydrothermal spring and deposits, New Zealand

Hydrothermal spring and deposits, Waiotapu, New Zealand. The white color is sinter (silica) and orange and yellows from antimony and arsenic precipitation.


Wellington area

In Wellington, my friends Rob and Sue took me to Red Rocks Scientific Preserve, some beautiful coastal exposures of the accreted Torlesse Composite Terrane. While most of the Torlesse around Wellington consists of Jurassic and Cretaceous submarine fan deposited sandstone, these rocks consist of chert, argillite, and basalt of probable Triassic age.


Distracting Fur Seal on the Red Rocks


And Wellington sits right next to the Wellington fault—one of the several fault zones that link the Alpine fault to the subduction zone. The Wellington fault is the closest of many faults that pose major earthquake hazards for New Zealand’s capitol city. According to the GNS, it last ruptured some 300-500 years ago –and has an estimated recurrence interval of 500-1000 years. The Wairarapa fault, only 20 km southeast of Wellington, broke in 1855 to unleash an earthquake estimated to be M8.2-8.3. Even the 2016 Kaikoura Earthquake, which occurred on the South Island, caused more than $500 million in damage to Wellington.

Ferry from Wellington to Picton (South Island)

I had a beautiful day for this beautiful ride, three and a half hours from Wellington across Cook Strait to Picton, a small town tucked away inside the countless inlets and bays of the South Island’s north coast. The intricate coastal landscape results from gradual subsidence of the land and invasion of the sea up pre-existing river valleys, many of which follow fault zones. Two of these faults are sketched in on the map.Ferry map

And here’s a map of the South Island!
S Island

Kaikoura area

Recently uplifted coastline, New Zealand

wave-cut bench, stranded beaches, and uplifted terrace at Kaikoura

Unlike the subsidence of the northern coast, the story around Kaikoura is one of coastal uplift. In fact, the 2016 Kaikoura Earthquake caused more than 5 meters of uplift in places. 5 meters! Near Kaikoura itself, that value was more like 1 meter, but still, you could see its effects. There’s an easy trail that crosses the Kaikoura Peninsula and returns via the beach. You can see the wave-cut bench, now largely above the intertidal zone, and stranded beach ridges. Then there’s the flat top of the peninsula. Formerly a wave-cut bench, it’s been uplifted by multiple earthquakes through thousands of years!

And the earthquake spawned countless landslides, many of which affected the coastal highway. My favorite slide was a few miles west of the highway up the Clarence Valley, shown below. I still haven’t determined if this is the same slide, but three cows got stranded on a slide block to become the subject of my now-favorite children’s book: “Moo and Moo and the Little Calf Too” by Millton and Hinde… it’s wonderful! Together, the landslides and ground ruptures during the earthquake closed the highway for over a year. It reopened in December, 2017—and they’re still working on it.GeologyPics-180124-93fMoo



Mouth of Waimakariri River, New Zealand

Waimakariri River and alluvial plain near Christchurch

Christchurch is really easy to find on a map because it sits on the north side of the Banks Peninsula, an almost circular protrusion into the Pacific. The peninsula marks a complex of shield volcanoes, active some 11-8 million years ago but now deeply eroded. Christchurch itself is pretty flat. It sits on the alluvial plain of the Waimakariri River, which rises in the southern Alps and enters the sea just north of the city. I picked my friend Megan up at their lovely airport and we went for a long beach walk –very few other people—just miles of sand and clouds and water and dunes…

Southern Alps (Mt. Cook –Aoraki)

Rocks are cool, but glaciers… wow! The glaciers, their erosional features, and their deposits are absolutely spectacular in this area! And besides, the bedrock around Mt. Cook/Aoraki is mostly this poorly bedded greywacke of the Torlesse Composite Terrane –so my camera saw mostly ice and landscape carved from the rock.


Mt. Cook Village, which has a couple hotels and a youth hostel, sits on a small alluvial fan on the edge of the glacial outwash plain. The mountains positively soar overhead. Megan and I hiked up to the Mueller Hut, situated on the long high ridge just south of the village. Everywhere, we saw the effects of ice. We could even hear the erosion, as rock and snow avalanches broke loose frequently on the glaciers across the valley. No wonder the area hosts incredible U-shaped, glacially eroded valleys and no wonder that the upper reaches of the valleys form bowl-shaped cirques, many of which are still occupied by glaciers. No wonder that steep headwalls rise behind the cirques. No wonder the peaks and ridges are so jagged. At the same time, it fills you with wonder!

For me, the most instructive view was up the Hooker Valley towards Mt. Cook. There, you see the lake below the Hooker Glacier, dammed in by one of the glacier’s moraines –and in the foreground, you see another lake in another valley dammed in the same way. Turning your gaze downstream, you can see the magnificent outwash plain, merging with the outwash plain of the Tasman Glacier –and then emptying into long Lake Pukaki—which fills a glacial valley that’s dammed by a moraine!

Glacial erosion and deposition, New Zealand

Moraines of till and moraine-dammed lakes.Mt. Cook -Aoraki- in background


Milford Sound

Glacial fjord. Milford Sound, New Zealand.

Gneiss and waterfall, New ZealandAs if Mt. Cook/Aoraki wasn’t enough, the experience of seeing the glacial fjord of Milford Sound kind of blew our minds. I was anxious beforehand because a storm was blowing in and I thought we’d get all wet and cold and be tossing about on the boat, but it turned out that the rain, sprouting thousands of waterfalls, made the place magical—and we were very comfortable on the boat. The rocks were pretty amazing too. Described by the GNS as orthogneisses, they originated as part of the Median Batholith during the Paleozoic but were metamorphosed and deformed during later mountain-building events, natural results of terrane accretion.

Glacial Fjord. Milford Sound, New ZealandFjords are narrow arms of the ocean that cut into the land. They have steep steep walls that rise 1000’s of feet on either side and drop steeply to great depths below water line. Fjords occupy former glacial valleys, deepened and steepened by the ice as it flowed down the valley towards the sea. When sea levels rose after the ice retreated, the sea invaded the former valleys. During rainy periods, the water, with little area to collect, runs off almost instantly as thousands of waterfalls. The next day, they’re mostly gone.

Bombing up the West Coast

We didn’t give enough time to the west coast –driving all the way from Wanaka to Hokitika in one day. It turns out that the storm we encountered at Milford Sound was much worse to the north, temporarily blocking the coast highway with fallen trees and landslides. And it washed out the access road to the Fox Glacier and the trail to Franz Josef Glacier, two glaciers that flow out of the Southern Alps to reach low, accessible elevations. I got to see the Fox Glacier 4 years ago –and this year, we did get a nice view of the braided river below the Franz Josef Glacier.


Fox Glacier and metamorphosed sedimentary rock–from my trip in 2014.

One of the things I remember about the Fox Glacier was the awesome bedrock! There, the greywacke of the Torlesse Terrane is metamorphosed to schist. This metamorphism seems to concentrate along the Alpine fault and die out away from it. The ridge we hiked to near Mt. Cook/Aoraki, for example, lies only 25 km to the south and consists of unmetamorphosed rock. These differences show how the Alpine fault is causing uplift of the range, the highest rates being right along the fault. We missed seeing the exposure of the fault at Gaunt Creek, just north of Franz Josef. Bummer.

Beach cobbles and heavy minerals

Beach near Hokitika

Hokitika was great. Turns out that it’s the prime place for New Zealand jade. The jade is nephrite, which is a microcrystalline variety of amphibole of the actinolite-tremolite series: the closer its chemistry to the iron-rich actinolite, the greener its color; the closer it’s to the magnesium-rich tremolite, the whiter its color. The nephrite forms in the southern Alps as a replacement mineral in lenses of serpentinite, enclosed by schist of the Torlesse Terrane. Most people find it as boulders and cobbles on the local beaches or rivers that drain this part of the southern Alps. We went looking of course –and came back with a lot of pretty rocks—but I’m skeptical we found any jade.

We also visited the Pancake Rocks near Punakaiki—made of 30 million year old limestone, which is part of New Zealand’s post-accretion cover sequence. The rocks have eroded along vertical fracture surfaces and show this really cool enhanced bedding, likely the result of dissolution along original bedding planes during compaction of the sediment. And it’s a beautiful headland, with sea stacks, a sea cave, blowhole, and a fabulous rock-fall deposit. And there are a zillion tourists—one guy practically pushed Megan over the edge to take his picture! Sigh…


Pancake Rocks near Punakaiki. Photo on right shows close up of enhanced bedding.

The highway across Arthur’s Pass back to Christchurch goes through some awesome scenery. In my mind, the best part was the eastward descent along the Waimakariri River—which at higher elevations makes beautiful braided channels in an outwash-choked floodplain. And the river terraces along the Broken River, each higher level marking an older floodplain were positively amazing. But we had a plane to catch.

Braided river and gravel bars, New Zealand

Braided channels and gravel bars on Waimakariri River.

To see more geological images, of here or New Zealand, please check out my website!

A few useful references:
Taupo Volcanic Zone: Cole, J.W. and Spinks, K.D., 2009, Caldera volcanism and rift structure in the Taupo Volcanic Zone, New Zealand, in Murphy, Kepple, and Hynes, eds., Ancient Orogens and Modern Analogues, Geological Society of London Special Publication 327.

Wellington fault:

General NZ geology: Graham, Ian J. editor, 2015, A Continent on the Move, New Zealand Geoscience Revealed 2ed., Geoscience Society of New Zealand, 397p.

And of course: Millton, J., and Hinde, D. (illustrator), 2017, Moo and Moo and the Little Calf Too. Allen and Unwin, Auckland.







Cove Palisades, Oregon: a tidy short story in the vastness of time

If I were a water skier, I’d go to Lake Billy Chinook at Cove Palisades where I could ski and see amazing geology at the same time. On the other hand, I’d probably keep crashing because the geology is so dramatic! Maybe a canoe would be better.

Lake Billy Chinook, Oregon

View across the Crooked River Arm of Lake Billy Chinook to some of the 1.2 million year old canyon-filling basalt (right) and Deschutes Fm (left). The cliff on the far left of the photo is also part of the 1.2 million year basalt.

The lake itself fills canyons of the Crooked, Deschutes and Metolius Rivers. It backs up behind Round Butte Dam, which blocks the river channel just down from where the rivers merge. The rocks here tell a story of earlier river canyons that occupied the same places as today’s Crooked and Deschutes Rivers. These older canyons were filled by basaltic lava flows that now line some of the walls of today’s canyons.

CovePalisades2From the geologic map, modified from Bishop and Smith, 1990, you can see how the brown-colored canyon-filling basalt, (called the “Intracanyon Basalt”) forms narrow outcrops within today’s Crooked and Deschutes canyon areas. It erupted about 1.2 million years ago and flowed from a vent about 60 miles to the south. You can also see that most of the bedrock (in shades of green) consists of the Deschutes Formation, and that there are a lot of landslides along the canyon sides.

The cross-section at the bottom of the map shows the view along a west-to-east line. Multiple flows of the intracanyon basalt filled the canyon 1.2 million years ago –and since then the river has re-established its channel pretty much in the old canyon. While the map and cross-section views suggest the flows moved down narrow valleys or canyons, you can actually see the canyon edges, several of which are visible right from the road.

Probably the best place to see a canyon edge is where you enter the park from the east and start down the grade into the Crooked River Canyon. That area’s shown in the white box in the cut-out of the lead photo (below).


cut-out photo showing locations described in text

There, you can see canyon-filling basalt flows cutting down through the bedding in the older rock. Their contact marks the walls of the old canyon. In my opinion, the best place to photograph this spot is from the road directly below—at the little star on the lead photo. There’s even a waterfall!

Buttress Unconformity, Oregon (Pan)

View upwards to preserved canyon edge, where the intracanyon basalt cuts down through the Deschutes Fm. Location marked by star in previous photo.

The photo below shows another view of a canyon edge—on the west side of the Deschutes River Canyon. It tells pretty much the same story, except that researchers have determined the lava came from downriver. According to Bishop and Smith (1990), some of the basalt, flowing down the Crooked River Canyon, encountered an obstacle somewhere beyond its confluence with the Deschutes River. This obstacle caused the flowing lava to pond and flow back up the Deschutes River Canyon!

Buttress Unconformity, Oregon (Pan)

Intracanyon basalt on skyline cutting down through older Deschutes Fm.


The Deschutes Formation. The rock of the original canyons, shown as the well-bedded material in the photos above, belongs to the Deschutes Formation. It formed as deposits from the early High Cascade volcanoes between 7.5 – 4 million years ago. Altogether, the formation exceeds 2000 feet in thickness. At Cove Palisades, the Deschutes Formation beautifully displays nearly its whole range of features, including braided channels, ash fall deposits, sandy debris flows, welded ash flow tuffs, and basaltic lava flows. It even hosts a small shield volcano, shown on the map as Round Mountain. Most of these features appear in the quarter-mile continuous exposure along the grade into the Crooked River Canyon –located by the pink-colored box on the photo above.

Volcaniclastic rock, Oregon

Deschutes Fm. as exposed near upper end of roadcut along eastern grade into canyon


Here’s one part of that roadcut—across from the large pullout near the top of the grade. You can see cross-bedded gravel filling scours and channels in underlying volcanic-rich sandstone and tuff. In the background, the shaded cliff and flat area is made of a basalt flow. It forms the rimrock of the Crooked River Canyon. The next photo shows this basalt, with some wonderful colonnade, at the very top of the grade.

Columnar-jointed basalt, Oregon

Colonnade in basalt of Deschutes Fm. The roadway makes the gray band at the bottom.

Then there’s “The Ship” –a beautifully exposed outcrop of ash flow tuff called the “Cove Ignimbrite”. This tuff, which is also exposed along the long roadcut, points to a period of unusually explosive volcanic activity in the early High Cascades. It turns out there are 13 other ash flow tuffs preserved in the Deschutes Formation. They’re described by Pitcher and others (2017) who found that they all erupted between about 6.25 and 4.45 million years ago.

Ash Flow tuff, Oregon

Cove Ignimbrite at “The Ship”

And Geologic Time  We see evidence of early canyons, carved into the Deschutes Formation by weathering and erosion. Later, these canyons filled with basaltic lava flows that erupted some 60 miles to the south near today’s Newberry Volcano. Weathering and erosion continued its work and carved the canyons again. But that’s not all. Landslides speak to weathering and erosion that continues today in the canyon. The Deschutes Formation, which formed the original canyon walls, is much older than all of this –it’s made of more than 2000 feet of material from volcanoes that no longer exist! Among other things, it tells us of an especially explosive period in the history of these former volcanoes. All within 7.5 million years.

Most geologists (me included) tend to think of 7.5 million years as a pretty short time. After all, the Cenozoic Era started about 66 million years ago –and before that was another 4,484 million years of Earth history. When you dig into the details though, you come to appreciate just how long that 7.5 million years really is –and then the vastness of geologic time becomes almost overwhelming.

You can view and download any of these images–and others from Cove Palisades– at a resolution that works for power point by typing “Cove Palisades” into the keyword search at

Bishop, E.M., and Smith, G.A., 1990, A field guide to the geology of Cove Palisades State Park and the Deschutes Basin in central Oregon: Oregon Geology, v. 52, p. 3-16.

Pitcher, B.W., Kent, A.J.R., Grunder, A.L., and Duncan, R.A., 2017, Frequency and volumes of ignimbrite eruptions following the Late Neogene initiation of the Central Oregon High Cascades: Journal of Volcanology and Geothermal Research, v. 329, p. 1-22.









Mauna Loa Volcano, Hawai’i –Earth’s largest active volcano

To get an idea of the immensity of Mauna Loa Volcano, take a look at the photo below. That rounded shape continues from its summit area at 13,678 feet above sea level to about 18,000 feet below sea level –and then another 25,000 feet or so below that because the mountain has sunk into the oceanic crust. It’s unquestionably the world’s largest active volcano.

Mauna Loa Shield Volcano

Profile of Mauna Loa Shield Volcano from… Mauna Loa Shield Volcano! (Geologypics: (170919s-15))

Briefly, Mauna Loa’s made of basalt. Basaltic lava flows, being comparatively low in silica, have low viscosities and so cannot maintain steep slopes, resulting in broad, relatively low gradient volcanoes called shields. With just a little imagination, you can see how Mauna Loa’s shape resembles that back side of some shield one of King Arthur’s Knights might carry into battle.

Read more…

Washington’s waterfalls–behind each one is a rock!

Of all the many reasons why waterfalls are great, here’s another: they expose bedrock! And that bedrock tells a story extending back in time long long before the waterfall. This posting describes 9 waterfalls that together paint a partial picture of Washington’s geologic history. The photos and diagrams will all appear in my forthcoming book Roadside Geology of Washington (Mountain Press) that I wrote with Darrel Cowan of the University of Washington.


Rainbow falls along WA 6 in the Coast Range


And waterfalls in heavily forested areas are especially great because they may give the only view of bedrock for miles around! Take Rainbow Falls, for example–the small waterfall on the left. It’s in Washington’s Coast Range along State Highway 6–a place where a roadside geologist could otherwise fall into total despair for lack of good rock exposure. But this beautiful waterfall exposes a lava flow of the Grande Ronde Basalt, which belongs to the Columbia River Basalt Group. Significant? Yes!

This lava erupted in southeastern Washington and northeastern Oregon between about 16 and 15.6 million years ago and completely flooded the landscape of northern Oregon and southern Washington. We know how extensive these flows are because we can see them–and they cover the whole region. The photo below shows them at Palouse Falls in the eastern part of Washington. Take a look at my earlier blog post about the Columbia River Basalt Group? (includes 15 photos and a map).

Read more…

“Crazy Modern Period” -a vanishingly thin sliver of Earth History

I’m in Florida, visiting my mother. There’s a beach, waves, shorebirds… And it’s warm! Late last week, my youngest daughter and I boarded a plane in Portland, Oregon, flew to Chicago –and then on to Fort Myers, Florida –across the continent for a distance of nearly 3000 miles. Being the holidays, the airports were packed, with people going in all directions, all over the planet. And like most people, we arrived at our destination the same day we departed.

Above the clouds --somewhere over eastern Oregon.

Above the clouds –somewhere over eastern Oregon.

Of course, just about everybody agrees that us human-types do pretty amazing things, like fly across the continent in a day and communicate instantly with family, friends, and colleagues on the other side of the planet. Oh for goodness sake… human beings have traveled to the moon and sent spacecraft to Mars!

In the context of geologic time, however, humanity and its accomplishments are positively mind-boggling. Homo sapiens dates back some 100,000 years, a miniscule period of time given that Earth is 4.55 billion years old. But it wasn’t until 1933, less than 100 years ago, that humans entered the “crazy-modern period” –when we flew the first airline flight across the US with no overnight stops. At that point, all parts of our planet became readily accessible to the public.

Divide 100 years by 4.55 billion? Our “crazy-modern period” is one 45.5 millionth of Earth history. What a unique moment in Earth history we’ve created! No other species has come close to anything like this –ever— in 4.55 billion years.

Sanibel Island and the Florida Gulf Coast --while descending into Fort Myers

Sanibel Island and the Florida Gulf Coast –while descending into Fort Myers

I won’t try to speculate how long our resources and (relatively) clean environment will last, but if we don’t figure out a way to live sustainably, these amazing times will soon disappear no matter how smart we are. Our sliver of Earth history will remain vanishingly small. Earth will heal, of course –but humans don’t have the same luxury of geologic time.

Regardless of whether or not we survive our successes, all of us share this unprecedented time. Here’s to another solstice passing –and to another calendar year. _MG_3784

Post Navigation

%d bloggers like this: