geologictimepics

Geology and Geologic Time through Photographs

Archive for the tag “Montana”

Glacier National Park –Proterozoic rock and fossil algae

Glacier National Park’s one of my favorite places.  It’s soaring cliffs, waterfalls, and colors are positively amazing –especially the colors.  Green green vegetation, and red, white, green, and tan rocks.

To think that these mountains were carved from sedimentary rock that was deposited at sea level and now host glacial cirques and valleys, and even a few remaining glaciers… The rocks are part of the so-called “Belt Supergroup”, which was deposited probably in a large inland sea over what is now much of western Montana, northern Idaho, eastern Washington, and southern BC and Alberta.

Peaks of Glacier National Park and St. Marys River.

Peaks of Glacier National Park and St. Marys River.

And the rocks are really old–radiometric dating has them as between about 1.4 and 1.5 BILLION years old.  Even without that knowledge though, you can guess they’re pretty old because, just about everywhere, they host fabulous sedimentary features like cross-beds, ripple marks, and mudcracks.  The sediments were deposited before critters were around to stir up the sediment.

Belt sedsrs pic

There are some fossils though: stromatalites, which are basically fossilized algae.  The algae grew as mats on the ocean floor, and because they were kind of sticky, trapped carbonate sediment.  Then they grew over the sediment –and then trapped more.  And more –until they created a mound, which in cross section looked like the photo just below –and in plan view, looked like the bottom photo.

cross-sectional view of a stromatalite in the Proterozoic Helena Formation, Glacier NP.

cross-sectional view of a stromatalite in the Proterozoic Helena Formation, Glacier NP.

Stromatalites of the Helena Formation as seen in plan view.

Stromatalites of the Helena Formation as seen in plan view.


for more photos of Glacier National Park, type “Glacier National Park, Montana” into the  geology photo search.
Or click here for a freely downloadable geologic map of Glacier National Park.

Great Unconformity in Montana –and rising seas during the Cambrian

Here’s yet another picture of the Great Unconformity –this time in southwestern Montana.  Once again, Cambrian sandstone overlies Precambrian gneiss.  You can see a thin intrusive body, called a dike, cutting through the gneiss on the right side.  You can also see that the bottom of the sandstone is actually a conglomerate –made of quartzite cobbles derived from some nearby outcrops during the Cambrian.

Great unconformity in SW Montana.

Photo of Cambrian Flathead Sandstone overlying Proterozoic gneiss in SW Montana.

 

And that’s me in the photo.  My left hand is on the sandstone –some 520 million years or so old; my right hand is on the gneiss, some 1.7 BILLION years old.  There’s more than a billion years of missing rock record between my two hands.  Considering that the entire Paleozoic section from the top of the Inner Gorge in the Grand Canyon to the top of the rim represents about 300 million years and is some 3500′ thick… yikes!

And… just like in the Grand Canyon and elsewhere, there is Cambrian age shale and limestone above the sandstone.  This rock sequence reflects rising sea levels during the Cambrian.  It’s called the “Cambrian Transgression”, when the sea moved up onto the continent, eventually inundating almost everywhere.  If you look at the diagram below, you can see how this sequence formed.

Marine transgression

Sequence of rock types expected during a transgression of the sea onto a continent.

If you look at time 1, you can see a coastline in cross-section, with sand being deposited closest to shore, mud a little farther out, and eventually carbonate material even farther out.  As sea levels rise (time 2), the sites of deposition for these materials migrates landward, putting mud deposition on top the earlier sand deposition and so on.  At time 3, the sequence moves even farther landward, resulting in carbonate over mud over sand.  If these materials become preserved and turned into rock, they form the sequence sandstone overlain by shale overlain by limestone –just what we see on top the Great Unconformity.

 

 

 

Post Navigation

%d bloggers like this: