geologictimepics

Geology and Geologic Time through Photographs

Archive for the tag “intrusive rocks”

Glacially carved granite in Rocky Mountain National Park, Colorado

This landscape is so smooth and rounded that you can easily imagine the ice that must have covered it some 20,000 years ago.  And the ice must have been deep!  Look halfway up the mountain in the foreground on the left; it shows a distinct change of rock weathering akin to a bathtub ring–and the ring persists around much of the photo.  It likely marks the upper surface of the ice at maximum glaciation.

140809-94
Upper Glacier Gorge, a glacial cirque in Rocky Mountain National Park, Colorado.  View of the Spearhead (left) and McHenry’s Peak (just behind)

Like most landscapes, this one’s pretty young–and those glacial effects are even younger.  When compared to the age of the rock, it seems almost insignificant.  The granite bedrock, which is granite, is 1.4 billion years old!  Elsewhere in Rocky Mountain National Park, the granite intrudes even older metamorphic rock –1.7 billion years old.  Just .3 billion years older.  I think we forget that “just .3 billion years” is 300 million years –about the same length of time as the entire Paleozoic!  And the Pleistocene Epoch, during which the glaciers grew?  It started some 2 million and ended about 10,000 years ago

Granite sill intruding gneiss, Colorado.
1.4 billion year old granite intruding 1.7 billion year old gneiss in Rocky Mtn National Park.


images can be downloaded for free at marlimillerphoto.com

Cretaceous batholiths and roof pendants

The photos from the last posting were from the Sierra Nevada Batholith –called a “batholith” because it consists of many many smaller intrusive bodies that collectively define a much larger intrusive complex that doesn’t even have a well-defined root.  As it turns out, the Sierra Nevada are one of several really large batholiths that intruded the crust of the Pacific Margin during the Cretaceous Period, about 80-100 million years ago.

Granitic Batholiths of Cretaceous age in western North America.

And along the east side of the Sierra Nevada, we can see the original rock into which the granite of the Sierra Nevada intruded.  This original rock consists of older sedimentary and volcanic rock–that dates from the Cambrian Period through the Jurassic– much of which was metamorphosed by the heat from the intruding granite.  The photo below shows the Cretaceous granite below (light colored rock) and the dark-colored sedimentary (now metamorphic) rock above.  These older rocks that are intruded by the granite are called “roof pendants” because they show the roof of the batholith.

Cretaceous granite intruding Cambrian metasedimentary rock, Sierra Nevada Range.

And as far as geologic time goes, this photo shows us that the granite, discussed in previous posts, is younger than the sedimentary rock that overlies it.

And click here to see a photo of glaciated granite in Yosemite National Park.

 

Igneous Rocks

Here are some samples of different igneous rocks.  The upper photo shows intrusive igneous rocks and the lower photo shows volcanic (extrusive igneous) rocks.

From left to right, these rocks are arranged in order of decreasing silica content: granite, diorite, and gabbro. Click here for more photos of igneous rocks and features.

I can’t claim that these are the most artistic photos, but they do show a couple things about igneous rocks.  First off, to be igneous, a rock needs to have cooled and crystallized from a molten state.   Intrusive rocks, shown in the photo above, are the type of igneous rock that cools and crystallizes within the crust; volcanic rocks, shown in the photo below, cool and crystallize on the Earth’s surface.  Because they form by cooling and crystallizing, crystals in both types  generally have a random orientation and an interlocking texture.  You can see that in the photo above, because intrusive rocks tend to be coarse grained.  It’s much harder to see that feature in volcanic rocks because they tend to be fine grained.

Intrusive igneous rocks are coarse-grained, and volcanic rocks are fine-grained because it takes time to grow crystals –and intrusive rocks take longer to cool and crystallize because they’re insulated by the surrounding rock.

These photos also demonstrate how igneous rocks generally become lighter in color as their silica content increases and their iron content decreases.  By definition, granite (left photo) has more silica than diorite, which has more silica than gabbro.  Iron tends to follow silica in an inversely proportional sort of way –so the gabbro has the most iron.  Same thing with the volcanic rocks.

When it comes to great lengths of geologic time, the intrusive rocks are the most instructive.  They form within the Earth– at depths of several kilometers to several tens of kilometers –but here are some hand samples at the surface?

So the big question is, how long does it take for a rock at a depth of say, 10 km, to make it to the surface of the Earth?  It depends on the rate of uplift and erosion –but really fast uplift rates are on the order of 1 meter/thousand years.  That makes for 10 million years at minimum just to get these little hand samples to the surface!

From left to right, these rocks are arranged in order of decreasing silica content: rhyolite, andesite, basalt. Click here for more photos of volcanic rocks and features.

Post Navigation

<span>%d</span> bloggers like this: